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Experimental Study of Parametric Autoresonance in Faraday Waves
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The excitation of large amplitude nonlinear waves is achieved via parametric autoresonance of Faraday
waves. We experimentally demonstrate that phase locking to low amplitude driving can generate
persistent high-amplitude growth of nonlinear waves in a dissipative system. The experiments presented
are in excellent agreement with theory.
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Introduction.—When a nonlinear oscillator is resonantly
driven by small amplitude periodic forcing, the amplitude
growth is arrested, even at zero dissipation, when nonline-
arity comes into play. This is because a frequency mis-
match develops between the (constant) driving frequency
and the (amplitude dependent) oscillator frequency [1].
Persistent amplitude growth can be achieved, by autoreso-
nance, when the system nonlinearly locks to an externally
varied (‘‘chirped’’) driving frequency to retain resonant
conditions. The precise form of the chirp is unimportant
once its sign is correct, and the chirp rate is below a critical
value. First predicted for harmonic forcing, autoresonance
has found many applications [2]. The technique was ex-
tended to weakly dissipative oscillators [3] and to non-
linear waves and vortices in nondissipative systems [4].
The theory of parametric autoresonance (PAR) was re-
cently developed, first for nonlinear oscillators [5] and later
[6] for nonlinear Faraday waves: standing gravity waves on
a free surface of a fluid which are excited parametrically by
vertical vibrations. This theory [6] predicts that a down-
ward chirp of the vibration frequency should cause persis-
tent wave growth, which is only expected to terminate at
large amplitudes, when an underlying constant frequency
system (CFS), introduced below, ceases to exhibit a non-
trivial stable fixed point.

Here we report the first experimental verification of PAR
excitation of a nonlinear wave. Using Faraday waves we
demonstrate that autoresonance is not hindered by moder-
ate dissipation, and the results compare well with an ex-
tended version of the theory [6]. We show that the
predicted (negative) frequency chirp indeed drives persis-
tent wave growth, via the PAR mechanism, to amplitudes
that surpass the theory’s region of validity.

Theory.—The theory of PAR excitation of nonlinear
Faraday waves [6] is based on an amplitude expansion
that extends earlier constant-frequency treatments [7,8]
to the chirped frequency case. Here we summarize the
main predictions of Ref. [6] and extend the model by
(i) introducing a more general form of driving acceleration,
and (ii) taking a more complete account of dissipation.

Throughout this Letter we consider a rectangular fluid
cell of length l, width w, and depth h in the x, y, and z
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directions, respectively. To avoid three-wave interactions
[9] we assume that the surface tension corrections are small
[10]. Furthermore, we assume a deep-water limit h > l and
a sufficiently small w so that the fluid motion is
two dimensional, depending on x, z, and t. The vertical
displacement of the vibrating cell is ��t� � �0�t� cos��t�,
where ��t� �

R
t
0 !�t

0�dt0 is the driving phase, while the
driving frequency !�t� and amplitude �0�t� vary slowly on
the time scale of !�1. In the weakly nonlinear regime, the
(time-dependent) scaled acceleration of the cell is "�t� �
!2�t��0�t�=g� 1, where g is the gravity acceleration. As a
result, the wave steepness parameter k�max � 1, where
k � �=l is the wave number of the fundamental mode, and
� is the wave amplitude. As the nonlinear frequency shift
of standing gravity waves, in the deep-water limit, is
negative [7], the PAR driving must use a negative fre-
quency chirp: d!=dt < 0. The amplitude dynamics of
the fundamental mode are governed, at leading nonlinear
order, by the equation [6]

��1 � 2� _�1 �
k2

2
�5 _�2

1�1 � 3�2�3
1�

��2�1� "�t� cos��t���1 � 0; (1)

where � � �kg�1=2 and �� � are the linear wave fre-
quency and effective linear damping rate, respectively (see
Ref. [11] for a review of different contributions to �).
Higher-order modes are enslaved to �1 and can be calcu-
lated once �1 is found. For concreteness, we assume a
linear chirp: !�t� � !0 ��t, where �> 0 is constant,
and !0 � 2 � is the resonant value of the driving fre-
quency. We also assume "�t� � "0�1� �t�, where "0 > 0
and �> 0 are constant [12]. Now we make an ansatz
�1�t� � A�t� cos��t� ’�t��, where A and’ are the slowly
varying amplitude and phase, and use the averaging
method [1]. Rescaling time � � �"0�t�=4, amplitude B �
kA"�1=2

0 , chirp rate m � 8�=�"0��2, and damping rate
� � 4�=�"0��, and denoting ��t� � �t2=2� ’�t� and
~� � 4�=�"0��, we obtain

_B � �1� ~���B sin�2�� � �B;

_� � �1� ~��� cos�2�� � B2 �m�;
(2)
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FIG. 1. Images at different phases of (a) an initial wave state at
!0 and a � 0:064 g and (b) the same state after being autor-
esonantly driven at a chirp rate of � � 0:2 s�2 to 	 
 �!0 �
!�=!0 � 0:08 and a � 0:113 g.
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where the dots stand for derivatives with respect to the slow
time �. The underlying CFS corresponds to m � ~� � 0.
Let us start the frequency chirp from the steady state
obtained for a constant-frequency driving (which is the
stable fixed point of the underlying CFS). For small m
and ~�, the PAR wave growth corresponds to the stable
quasifixed point of Eq. (2). To leading order

B2
	��� � ��1� ~���2 � �2�1=2 �m�;

�	��� �
1

2
arcsin

�
�

1� ~��

�
:

(3)

The PAR breaks down if the rescaled chirp rate m exceeds
a critical value mcr � O�1� which depends on � [6] and ~�.
In any case, the wave growth must terminate at large
amplitudes, when higher-order corrections to Eqs. (1)
and (2) cause the disappearance of the nontrivial stable
fixed point in the underlying CFS [7,8].

Alternatively, we can start from a very small initial
amplitude B0 far from resonance and pass through the
resonance. In the linear locking stage, we can drop the
B2 term in Eq. (2) and obtain [6]

B2
	��� ’ B2

0 exp
�
�
���������������������
1� �m��2

q
�
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m

� 2��
�
;

�	��� ’
�
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�

1

2
arcsin�m�� �

m

4
���������������������
1� �m��2

p ;
(4)

where we have put ~� � 0. As long as B	��� � 1, Eq. (4) is
valid on the time interval �1<m�< 1 (but not too close
to m� � 1 [6]). Remarkably, Eq. (4) corresponds to an
unstable (saddle) quasifixed point [6], so the system even-
tually escapes from this point and either enters the non-
linear phase-locking regime, described by Eq. (3) with a
shifted time, or loses phase locking. If or when B	���
approaches unity, Eq. (4) becomes invalid. The amplitude
B	���, given by the first of Eq. (4), reaches a maximum at
�m �

���������������
1� �2
p

=m. Its maximum value

Bmax
	 ’ B0 exp

�
1

2m
�arccos�� �

���������������
1� �2

p
�

�
(5)

decreases with an increase of m. Therefore, at sufficiently
large m Eqs. (4) and (5) remain valid over the whole
interval �1<m�< 1.

Experiment.—Our experiments were conducted in a
transparent cell mounted on a Unholtz-Dickie model
5PM electromechanical shaker made to oscillate in the
vertical (z) direction. At !0 � 54:7
 0:16 s�1 we excite
an almost pure gravity wave [10] with k � 2�=8 cm�1,
whose wavelength is twice the cell length of l � 4 cm. The
cell of width w � 2 cm was filled to depth h ’ 6 cm with
hexamethyldisiloxane and sealed to prevent evaporation.
Hexamethyldisiloxane is a Newtonian fluid whose kine-
matic viscosity, surface tension, and density are, respec-
tively, 0.65 cSt, 15:6 dyn=cm, and 0:76 g=cc. The kine-
matic viscosity was stabilized to within 
1:5% by fixing
the fluid temperature to 26:6
 0:2 �C. We generated ac-
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celeration profiles of the form a�t� cos�!0t��t
2=2� by

computer. a�t� was controlled to 1% and measured to
0.001 g resolution by an ADXL103 accelerometer.

Computer-triggered visualization of the wave profile
was performed by uniform illumination of the fluid-air
interface from behind. The interface’s high curvature,
due to its wetting of the side walls, refracted light away
from a CCD camera mounted on the opposite side of the
cell. This resulted in a sharp dark edge depicting the inter-
face; see Fig. 1. A reference mark on the cell enabled
measurement of its instantaneous vertical position. Edge
detection produced a vector of the interface’s location
relative to the cell position as a function of time. The
scaled amplitude of the fundamental, kA, measures the
steepness of the wave profile. To enable direct comparison
to theory, we needed to isolate the fundamental of the
interface waveform. To this end, we measured the differ-
ence in wave elevation between two points, chosen to be
symmetrical about the center of the cell on the x axis. This
eliminates, by symmetry, all of the even harmonics of the
interface elevation. Although the third harmonic is not
filtered out, the resulting systematic error of A is only
about 1% at kA � 0:2, and does not exceed 6% for kA �
0:6. We could therefore ignore the third harmonic while
comparing our measurements with the theory in the weakly
nonlinear regime. The statistical error in kA, as estimated
from steady-state data, is �1%. The instantaneous phase
mismatch � between the driving and temporal response
was extracted using complex demodulation [13] of two
time series: the measured reference mark on the cell and
the wave elevation.

In Fig. 2(a) we present the measured critical accelera-
tions ac�	� for the Faraday instability of the flat surface as
function of the scaled detuning 	 
 �!0 �!�=!0. The
system undergoes a hysteretic transition [8] at another
critical acceleration, ah�	�: the lowest acceleration at
which the nonlinear wave remains stable.

Figures 2(b) and 2(c) depict steady-state (CFS) mea-
surements of kA and �, respectively, as a function of 	 for
3-2
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FIG. 3 (color online). Chirps in 	 initiated from a fixed point.
Measured (a) and computed from Eq. (2) (b) values of kA versus
the detuning 	, starting from 	 � 0 and a0 � 0:064 g. � ’ 0:9.
Chirp rates of� � 0:09, 0.15, 0.18, and 0:20 s�2 (black to green/
dark to light solid lines) converge to the fixed point (circles). kA
for � � 0:21 and 0:25 s�2 (red/light and blue/dark dash-dotted
lines) diverge from the steady state and decay. The dashed line in
(b) depicts the line of quasifixed points from Eq. (3). (c) and (d)
are the measured and computed values of �, respectively.
(e) Experimental (diamonds) and computed from Eq. (2)
(squares) values of �cr as a function of a0.
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FIG. 2 (color online). (a) Measured 	 dependence of ac
(circles) and the hysteretic region bounded by ah (triangles).
Dashed lines depict cubic interpolation. Inset: Close-up of the
vicinity of 	 � 0. Steady-state measurements of kA (b) and
� (c) for different values of a � const (legend) versus 	. Here
� � 0:65. Dashed lines in (b) denote the maximum detuning
attainable for each value of a. Inset of (c) is a close-up of the
vicinity of 	 � 0; dashed lines depict the predicted values.
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a � const. Note that a � ah sets the maximum attainable
detuning. Until a � ah, kA increases rapidly with increas-
ing 	 (decreasing!). Beyond this point, waves will rapidly
decay.

The wave damping rate � can be extracted from mea-
surements of ac, since � � 1 at the instability onset. With
� in hand, we can directly compare our measurements to
theoretical predictions with no other free parameters. The
measured phase difference for 	 � 0 agrees within 5%
with the predicted value. The slow increase in � with 	
in Fig. 2(c) is due to higher-order nonlinearities.

Our first series of measurements used a linear chirp, 	 �
�t=!0, starting from a steady-state wave with a small but
finite amplitude, at! � !0 and a � a0 > ah. Importantly,
our choice of the system parameters precluded the excita-
tion of other linear modes during a negative chirp. As
shown in Fig. 2(a), ah�	� is almost linear with 	 for 0 �
	 < 0:12. To maximize the frequency range of the excita-
tion, we ramped a linearly in time, a�	� � a0 � 
	, to
make a nearly parallel (
 � 0:609 g) to ah�	�.

An example of an autoresonant state achieved in a
typical ‘‘ramping’’ experiment is shown in Fig. 1, where
images at the initial and final values of 	 are presented.
Note the substantial increase in the wave amplitude. In
Figs. 3(a)–3(d) we analyze the dynamics leading from
Fig. 1(a) to Fig. 1(b) by comparing experimental measure-
ments of kA and � with theoretical predictions, obtained
by integrating Eq. (2) numerically for several chirp rates
for the same ramp and initial conditions [14]. For small
values of �, phase locking occurs where, as a function of
	, both kA and � quickly converge to the values that they
would attain in steady state for each instantaneous value of
a�t� and 	�t�; see Eq. (3). At larger values of �, however,
no phase locking occurs. Here � diverges rapidly away
15450
from the steady-state curves, and subsequently kA rapidly
decays to zero.

As the theoretical curves were obtained with no free
parameters, the agreement between experiment and theory
is striking. Although the transients are slightly more long-
lived in the theory, identical convergence or divergence of
both the phase and amplitude of the waves to/from their
steady-state values is observed for all of the values of �
used.

An important prediction of the theory is that above an
a0-dependent critical chirp rate, �cr, phase locking is not
possible. For relatively small values of a0, there is good
quantitative agreement between the measured and pre-
dicted values of �cr; see Fig. 3(e). Furthermore, �cr still
exists for larger accelerations. Even though �cr increases
with a0, as predicted, the predicted and observed values of
�cr systematically diverge with increasing a0. This diver-
gence is not surprising, as for a0 > 0:07 g the phase lock-
ing occurs for kA > 0:4, where we would expect the
weakly nonlinear theory to become inaccurate. These re-
sults imply that PAR for �<�cr persists far beyond the
region of validity of the weakly nonlinear approximation.
Note that transient stages of � in Fig. 3 trace an envelope,
corresponding to the universal trajectory (a saddle point)
obtained at � � �cr [6].

Our second series of measurements involves ‘‘passing
through’’ the resonance at!0 before any waves are initially
excited. We begin from a flat state at a negative detuning
	init < 0 (i.e., !>!0), with ac�	 � 0�< a< ac�	init�.
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FIG. 4 (color online). Passing through resonance. (a) Measure-
ments of kA for a � 0:168 g, �0:046< 	< 0:08. Solid (dash-
dotted) lines depict phase locking (unlocking) for the values of�
(s�2) presented in the legend. (b) Comparison of measured (dots)
and computed from Eq. (4) (lines) values of kA in the initial
stages of the two runs with � � 0:27 s�2. The different initial
values of kA0 [obtained by fitting Eq. (4)], resulting from low-
level noise, determine the eventual behavior. (c) Computed
values of kA, using Eq. (2), corresponding to the parameters of
(a). (d) Comparison of computed (solid lines) and measured
(dotted lines) values of kA for kA < 0:3.
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We then apply a linear chirp 	 � �t=!0 while keeping a
fixed throughout the experiment. As 	 is increased, we pass
through a region of 	 where a > ac�	�.

The dynamics of passing through resonance are demon-
strated in Fig. 4, where experimental measurements of kA
as function of 	 are shown for several chirp rates. As in
Fig. 3, the distinction between phase locking at low values
of � and phase unlocked states at high values of � is clear.
A closer look at Fig. 4(a), however, reveals that the precise
value of �cr is undetermined. Two different runs with the
identical chirp rate of � � 0:27 s�2 have qualitatively
different behavior: one decays, while the other phase locks
into PAR. The difference in these two runs stems from the
dependence of �cr on the wave’s initial amplitude A0. As
the waves evolve from noise, we do not have experimental
control over A0. In Fig. 4(b) we present fits of the initial
stages of both of the � � 0:27 s�2 trajectories shown in
Fig. 4(a) to Eq. (4), where the sole fitting parameter is the
value of A0. In both the phase-locked (kA0 � 0:002 69

0:000 02) and unlocked (kA0 � 0:0009
 0:000 04) runs
the experimental points are indistinguishable from the
theoretical predictions. Thus, a difference of about
10 �m in A0 (�0:1% of the final, phase-locked amplitude)
is sufficient to determine the wave’s long-time dynamics.
Similarly, we obtained A0 for all of the runs presented in
Fig. 4(a) and, using these values, present the computed
functions kA versus 	 in Fig. 4(c), for the parameter values
used in Fig. 4(a). As in Fig. 3, the theory, which uses no
15450
other free parameters, is a strikingly good description of
the measurements, especially for values of kA � 0:15,
where the weak nonlinearity condition kA� 1 is well
satisfied. This is demonstrated in Fig. 4(d) where a close
comparison of theory and experiment is performed for the
three runs where phase locking failed. In the runs where
kA � 0:15 throughout the entire experiment, theory and
experiment are nearly indistinguishable. The agreement
deteriorates when kA > 0:2, when the system is no longer
in the weakly nonlinear regime.

In summary, one can control nonlinear Faraday waves
by employing PAR. The PAR technique remains opera-
tional for moderate dissipation and well beyond the weak
nonlinearity. It would be interesting to extend it to multi-
mode regimes and to other examples of nonlinear waves.
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